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CERTAIN DYNAMIC AND STATIC CONTACT PROBLEMS OF THE THEORY OF 
ELASTICITY FOR A CIRCULAR CYLINDER OF FINITE SIZE* 

M. I. CHEBAKOV 

Axisymmetric, dynamic contact problems of the theory of elasticity concerning the 
vertical (problem 1) and torsional (problem 2) oscillations of a stamp lying on a 
plane boundary of a circular cylinder of finite size, are considered. In case of 
problem 1 it is assumed that the side surface of the cylinder is in contact with a 
smooth, rigid yoke, and for problem 2 the side surface of the cylinder is innnovable. 
A static probiem (problem 3) formulated analogously to problem 1 is also studied. 
The solutions of the above problems are obtained using the method of homogeneous 
solutions /l/. Conditions of generalized orthogonality of the axisymmetric homo- 
geneous solutions are obtained for the problem of steady-state oscillations in a 
layer, in a manner analogous to that used in /2/. A numerical example is solved, 
which shows that in a static problem with the cylinder height and radius of the 
stamp both fixed, the resistance of the cylinder against the penetration of the 
stamp is a nonmonotonous function of the cylinder radius. Problem 1 was solved by 
a different method in /3/, and a number of axisymmetric contact problems for a 
cylinder formulated in a similar manner were dealt with in /4-9/ et al. 

1. Condition of generalized orthogonality in the problem of steady-state 
oscillations of a layer. Let us consider an elastic layer 1 2 1 < h r > 0 (r, Z, Cp are 
cylindrical coordinates), and let the edges z = &h of this layer be a) fixed, b) stress- 
free, or the edge z = h be fixed and z = -h stress-free. Seeking a solution of the Lame 
equations in the form 

% (F, Z) = Ak (Z)J, (Ph.+ wk (r, z) = & (z)J, (PkF) (1.1) 

where uk (F, z)eioL and wk (F, Z)t+“’ are the projections of the displacement vector on the F-and 
z -axis respectively, w is the oscillation frequency and t is time, we obtain the system of 

differential equations 

A,i” f (e,’ - apk’)Ak - (1-2v)-1pkBk’ = 0, aBk” f (8,e -pka) Bk + (1 - 2~)~~ pkAk’ = 0, 02* = ff! , (1.2) 

under the conditions that 

a=2&- 

a) At (k h) = Bk(& h) = 0, b) u,~* (* h) = rk* (h h) = o,C) Ak (h) = Bk (h) = uzk* (4) = tk+ (-4) = 0 (1.3) 

where p is density, p and Y are the elastic constants of the material and the components of 
the stress tensor without the temporary multiplier have the form 

uzk (r, z) = p%k* (z)J~ (Pkr)r z,,k (r, z) = pTk* (z)J, (ph.& U rk = p h&k* (z) Jo (Pkr) - 2Ak b)r-‘J, (Pkr)] (1.4) 

‘%k* (z) = BPkAk (z) + aBk’ (z), zk* (z) = Ak’ (z) - PkBk (z). (rrk* (z) = aPkAk (Z) + BBk’ (Z) 

Let the problem (1.2), (1.3) have simple eigenvalues only, and Pj’ f: Pn’. Then its 
eigenfunctions will satisfy the following relations of generalized orthogonality (his the 
elastic constant of the material): 

I, 

lJj,= J [pjp,BjB, + &‘AjA,- Aj’A,‘] dz = 0, Vjn = f [pjpnAjA, + BleBjBn - Bj’B,‘] dz = 0 (1.5) 
--h --h 

tV’j,= i [U,.j*A,-BjT,,*]dz=O, @I*=* 
--h 

The first two relations of (1.5) are obtained in a manner analogous to that used in /2/ for 
a plane problem. It can also be shown that 
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wj, = 2 (&I" - Pj')-' I~nsm* (Z) Bj (Z) - PUB, (Z)ezj* (Z) - Pjrj* (Z)A. (Z) + P,Aj (Z)Gz* (Z)I I _hi’ (1.6) 

ion (1.3) from which the last relation of (1.5) follows with any form of the boundary condit 
taken into account. 

2. Vertical oscillations of a stamp. Let US consider an axisymmetric 
problem of vertical nonresonant oscillations of a stamp of radius a, lying without 
on a plane boundary of a circular cylinder of radius R and height h, acted upon by 
force Pemiwt , under the following boundary conditions: 

a,(r,z)=O (z=h,a<r<K), w(r,z)=6(r) (z=h,r<u) 

qz (r, z) = 0 (z = h, z = 0, r < R), 1~ (F, z) = 0 (z = 0, r < R) 

q, (r, 2) = u (r, 2) = 0 (r = R, 0 < 2 <h) 

contact 
friction 
a vertical 

(2.1) 

Here ue-ict, we-'@' are the projections of the displacement vector on the r-and Z-axis respect- 
ively, and u,e-'Wt, z,,e-(ot are the components of the stress tensor. We solve the problemstated 
using the method of homogeneous solutions /l/. According to this method we first find a 
solution of the problem for the layer when 

or (r, 2) = p (r) (z = 11, r < a), aI (r, z) = 0 (2 =: h, r > a) (2.2) 

zTz (r, 2) = 0 (z = FL), z,, (r, 2) = w (I‘, 2) = 0, (2 = 0) 

Using the principle of limiting absorption /lo/, we multiply the right-hand sides of the Lame 
equations by the corresponding weighing terms 

spoa (ueViwY) / at, .sp~El (we-'@')/ at 
(E is the fictitious absorption coefficient) and seek a solution of such equations in the 
form ue_iOl, weeiw'. Separating the variables and applying a Hankel transform to the resulting 
equations in u and w, we obtain 

Le (z, 4 = B (z, u) y (f-4, L,, (2, 4 = A (a, u) y fu) 

L,, (z, u) ==T [A’ (z, u) - uB (z, u)l y (u), y (u) = l@A (h, u) + cd?’ (h, d-’ 

A (z, u) = ux,-l I(%* -I- u”) sh qeh ch x,z - Zxeqe ch qEz sh x&l 

B (2, u) = -l(q," -I- u2)sh qehshx,z - 2u2 sh qez sh x,h] 

xf = u3 - po" (1 + 1E.1 I (h +- 2&, $2 = 23 - pwZ(1 + ie) I I_r 

where a prime denotes a derivative with respect to its first argument. 
In the second stage of the solution we construct a system of homogeneous solutions of 

the Lam& equations, transformed in the manner shown above, for a layer. We then have 

(Tz (r7 Z) = rTz (r, Z) = 0 (2 = h), W (F, Z) - T,, (r, 2) = 0, (2 == 0) 

The above boundary conditions are equivalent to conditions b) given in Sect_l,provided 
that the boundary value problem is continued symmetrically into the region -h<z (0. The 
projections of the displacement vector and the components of the stress tensor will have the 
form (l.l), (1.4), where 

Ak (Z) = A (Z, J+), BI, (Z) - B (Z, Pk) (2.4) 

and we must seplace XE' and ne' by 

xx," = pn_* - pd(1 -I- is)/' (h -+ 2& qh-g2 = pa2 - pw2 (1 + ie) / ~1, @paAk fh) -t a& (h) = 0) 

respectively, where pr are the roots of the equation contained within the brackets. 
In the third stage we introduce the functions 

~@)(r, Z) = ,,,,&Ah- (Z) Jr&r), 0 Cr, z)== kg1 D& (2) Jo(phr), 
n 

e (T, z) = k;i Rzh.* (2) Jl(P!J) (2.5) 

where the summation is carried out over all px for which Im(&)>O, and Dk are unknown co- 
efficients. Then we can write the solution of the problem formulated at this stage in the 
form 
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u (r, 2) = IL(‘) (r, 2) - u@) (r, z), w (r, z) = w(l) (r, z) - w@) (r, z) 
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(2.6) 

We find the coefficients Dk of the expansion (2.5) from the condition 

u (r, z) = 0, z,, (r, z) = z,,(‘) (r, z) - 7,,(‘) (r,, z) = 0 (r = Z?) 

which we shall rewrite thus 

~~~D,A~,(z)J,(~~A)=~'*)(R, Z) 3 kjil DkG* (r) J1 (pkR) = P-‘dt’ (f& Z) 

Let us multiply the first equation of the above relations by crj* (4, the secondby Bj(z), 

subtract the second from the first and integrate from-hto h. Taking into account the last 

relation of (1.5) which holds also when a # 0, we obtain 

h 

Dh.=(P.Wh.lrJr(P&))-l l [ILU'l'(R,Z)u~(Z)--tt:'(R,Z)B~(Z)ldZ = (~WkkJl(mR))-‘~4(P)nh (l’)P&’ 
(2.7) 

--h cl 

Equating the last relations of (2.7) and (1.5) we obtain Mk (pj)= y @j)w&j, where the funC- 

tion T(U) is given by (2.3). Taking into account the boundary conditions for the homogeneous 

solutions and the relation (1.6) for Wkj, we obtain 

Mk (u) = 2u& (h) (u" - pk2)-r, Qk (P) = 2Bk @) 1 + Jr (IAft) Jo (Up) du = -2 Bk (h) @kzo (- ippk) KI (- i&k) 

cl 

The last integral is taken from /ll/, takinq into account the fact that 1J.n (pk)#O for all 

pk:ZO(z) and K,(x) are modified Bessel functions. 

We find now that all conditions (2.1) of the problem 1 hold, with 

dition 

exception of the con- 

20 (r, z) = r&) (r, z) - w(a) (r, z) = 6 (r) (z = h, r < a) 

Let us introduce the operator K,,,epl = p.w(l) (r,h), where ~(1) (r, h) is 
formulas of (2.3). Then, satisfying the last condition, we obtain the 

equation for the contact pressure q(p) under the stamp: 

fL-'%U7=6(r)+ &&&(h)&(Phr) @<a) 

Writing now q(p) in the form 

n(p)= & [40(P) -t &'kB*@-)'z', (P)] 

defined by one of the 

following integral 

(2.8) 

where qk (P) is the solution of the integral equations 

K,t,% = (1 - ~16 (r) (r Q a), KTt,Eqk = (1 - ~)Jo (Pd, (k > 1, r < 4 (2.9) 

and substituting (2.8) into (2.71, we obtain an infinite system of linear algebraic equations 

for determining the constants Dk of the expansion (2.8): 

51; = g/j -I- fj ai,,,~,, (zh. = DkBh. (h) II (Z&/h), 12 ,> 1) 7 ah-n = -2iy~W~h.-‘Bh.’ (h)K, (Ryl, / h)Zl-’ (&‘, / h) Z’,, k (2.10) 
n=1 

_ 

gk =~ --2iy~Wkti-‘&’ (h)K, (Ryk / h)T,, k, yh. = -i&h, Tn,i, = j Q,,(p) 10 (pvrih) PdP 
0 

Until now we assumed that the coefficient of fictitious absorption of the medium e>O. 
Making e tend to zero, we obtain a solution of the initial problem 1. It must be remembered 

here /12/ that some of the zeros and poles of the function L,(h,u) given in (2.3) will pass, 

as ~-0, to the real axis, and this will distort the contour of integration in the expres- 

sion for the kernel of the integral equations (2.9). The authors of /12/ discuss the shape 

of such a contour T in detail. 
If follows that the contact pressure is defined b:; the formula 

q(p)-=-& [40(p)+ ~XiiZ?(y,RIQIJ~(Pl] 
h'=1 

(2.11) 

where xk is a solution of the system (2.1) for e = 0, ph.(p) is a solution of the known /12/ 

integral equations (qk (~p)=*~(p)) written in dimensionless variables 
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(2.12) 

fk (r) = -3 WY if k= 0; I, (ay,r/~h), if k > 1) (2.14) 

Moreover we shall assume in (2.12) that ok are poles of the function L (7) (2.13). The contour 
I? coincides with the positive part of the real axis everywhere except on the segments con- 

taining real poles of the function L(T) /12/. In the case of alternating the zeros andpoles 

of this function, the segments indicated are bypassed by the contour from below /12/. 

Let us investigate the infinite system (2.10). We know /12/ that the function L(T) has 
a finite number of real zeros and poles and that the number increases with increasing reduced 

frequency El,*. At large numerical values the complex poles of the function L(t) have the 
following asymptotic representation (*) (ai(i = 1, 2, 3, 4) are real constants) 

z, = ihy,, - ina, + a2 In (+n + a&) (2.15) 

Taking into account (2.15) we can show as was done in /1,13/, that at large numerical values 

the coefficients of the infinite system (2.10) have the following asymptotics (k, n---f 00): 

1 gk I- k-l exp [---a,k (R - a) / hl, 1 akn I - k-l exp [--al (k $ n)(R - a) / h] (2.16) 

It follows therefore that the system (2.10) belongs to the class of the normal Poincarg-Koch 

systems and can be solved by the reduction method for any value of the parameter(R - e)lh> 0. 

3. Torsional oscillations of a stamp. We shall consider an axisymmetric contact 

problem of nonresonant torsional oscillations of a stamp of radius a, rigidly coupled to 

the plane boundary of a circular cylinder of radius R and height h, acted upon by the 
moment Me-icd , with the following boundary conditions: 

u (r, 2) = &r (r < a, z = h), zz8 (r, 2) = 0 (a < r < R, 2 = h) (3.1) 

u (r, z) = 0 (z = 0, r .< R and r = R, 0 -< z <.h) 

Here vemiot denotes the displacement along the q-axis, T,~ e-'OL are the tangential stresses 

and 6 is the stamp oscillation amplitude. 

Using the method of homogeneous solutions which was used to solve an analogous static 

problem in /13/, we reduce the present problem to that of investigating the infinite system 

(2.10) with the coefficients 

ffk = 2 (-ljkK1 (Ryk / h)T,,k, akn = 2 (-l)h'+" h-'K, (Ryl, / h)ZI-‘(Ry, / h]Tnlk (3.2) 

Tn,k=f %(p) zl(PYk/h) p+‘, iyk = [x2 - 19 (k - ‘/$I’:, L (u) - (I/u-% th r/G - 9, x2 = po2h2p-’ 
0 

fk (4 = (62 if k - 0; a-‘II (ayks / h) if k > 1) 

Here 7, (up) = % (P) are solutions of the integral equations (2.12) for n = l,Zi, = iv!; are 

the poles of the function L(u), and the contour was chosen according to Sect.2. The tangent- 

ial contact stresses under the stamp are defined by the formula 

z(r) = pto (r) + + xzk (-- lJk Tk (r) G’(&k/h) 

h'=1 

(3.3) 

The asymptotic expressions (2.16) where a,= s hold also for the coefficients of (3.2), there- 

fore the system (2.10) with the coefficients (3.2) belongs to the normal Poincare-Kochsystems. 

4. Static contact problem. Consider an axisymmetric static contact problem of imbed- 

ding astamp of radius u into a plane boundary of a circular cylinder of radius R and height 

h, using a force P. The boundary conditions have the form (2.1) where n and ware projec- 

tionsofthe displacement vector, and c,,rTL are components of the stress tensor. Again, as in 

Problem 1, weuse the method of homogeneous solutions to find the contact pressure according 

to the formula (2.11) in which tk is the solution of a system of the form (2.10) with the 

coefficients given by 

* Makhema V.K. Three-dimensional dynamic problems of steady-state oscillation of plates. 

Avtoref. Kand. dis. Rostov-on-Don, 1979. 
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gk = tg2 y&, (Rrh. 1 h)T,,s, ah,, = h-’ tg2yr;Kl (Ryk 1 WC’ (Rydh) T,).k (4.1) 

L(U) = (ch 2s - 1) (2~ + sh2u)-l (4.2) 

The function T,,.k is given in (2.10), gh (ap) represents a solution of the integral equation 

(2.12) in which fh- (r) has the form (2.14) and iyk are complex poles of the function L (r) 
lying in the upper half-plane. Since the function L(r) has no real poles, it follows that 

the contour I' in (2.12) will fully coincide with the positive part of the real axis. The 

infinite system (2.10)- (4.1) will, in this case, also belong to the normal Poincare-Koch 

systems. 

5. Solution of the integral equations (2.12). Contact problems for an elastic 

layer analogous to the Problems 1-3, can be reduced to integral equations of the type (2.12). 

Such equations have been exhaustively studied, and their solutions can be obtained using e.g. 

asymptotic methods /14/. We know (see e.g. /15/J that,when lim L(z)= 1 + 0 (-I-?) (T--t 0) the 

equation (2.12) is equivalent to the integral equation of the second kind 

(5.1) 

M(Y)=~[1-L(u)lcosuYdu (5.2) 
r 

where L(U) is (2.13) (Problem l), (3.3) (Problem 2) or (4.2) (Problem 3). In the case of 

dynamic problems the contour r is situated as in Sects.2and3, and for the static problem 

it coincides with the positive part of real axis. Moreover, forproblems 1 and 3 we have 

and for Problem 2 we have 

(5.3) 

(5.4) 

We use the method of iarge h (see e.g. /16/) to solve the integral equation (5.1), (5.2). 

To do this, we must write the kernel (5.2) in the form of an expansion in positive powers of 

IYI - This is easily done for Problem 3 /14/ 
m 

_IZ (j/) = c bi, y2”, b,=~~[l-L(7~)17ilid71 

h=rJ 0 

(5.5) 

and in this case we can write the solution of the equation (5.1), (5.5) for large h in the 

form /13,16/ 

(Pm@)= d,(t) f ; fl;“‘Pj, 
,=O 

fl,‘,’ (h) = 2 h-Wl)[$ + h-‘&J (5.6) s=i 

where AZ is an arbitrarily large number and the coefficients firi"' and acjn' are found from 

the simple recurrence relations 

(5.7) 

2 
$oon’ = n bozooa-‘Fo”‘, zki = (2/i)! [(2j)! (2;; - 2j)!l-' 

Thus in the case of 

degree of accuracy. 

For the kernel 

large values of the parameter h(h,<h< m) we can solve (5.6) with any 

(5.2) of Problems land2 the following expansion holds: 

.If (I/) = k;. bk 1 Y 1 (O<Y<Yyo<~) (5.9) 
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We shall show how this expansion can be obtained for Problem 2, since for Problem 1 the pro- 
cedure will be exactly the same. Let us write L(u) in the form L (u) := L, (u) + L? (u) under 
the condition 

This can be done if 

(U -1 X) (5.10) 

Then we have 

(5.11) 

M(y) = Ml(Y) c fifz (Y)7 Ma (y) = ( L, (u) cm uy du = 
b 

5 y2k (- l)k [(2/c)!]-’ [ Lz (u) u*“du 
k=0 ? 

~l(y)=~[l-L,(u)lcosuyd~=~~,*~y(k, 
2-c (-- Qk++, 

&+I= 2(2k + I)! ’ 
r k=o 

1 [f-L(u)- &$] u’“‘du 

r i=l 

Jf1 (Y) can be expanded into a series in the same manner as (1.3) in /17/. Thus the kernel 

(5.2) of the integral equation (5.1) can be written for Problems 1 and 2 in the form of a 

series (5.91, and solved using the method of large 1, , with any degree of accuracy, in the 
form (5.6) where 

.\I 

(5.12) 

and the coefficients '1 d jm are given by recurrent relations of the type (1.6) of /16/. 

Knowing the solution of (5.1) in the form (5.61, and using the expressions (5.3) and 

(5.4), we can now obtain simple expressions for calculating the coefficients of the system 

(2.10) for Problems 1 and 2. 

6. Example. We shall consider a static problem of imbedding a flat stamp (b(r)-6 z~~~~,~) 

into an elastic cylinder (Problem 3, Sect.4). We have the following contact stresses for 

this problem: 

cc M 

!I (r) = & [‘lob) + 4 &,l;‘(Y,R/h) Qk (r)] (r < a) , ‘lh-(pa)~q[Caj”(i)~j(,)-~Ch-(P)] (p<l, M-xl) (6.1) 

k=1 ,=o 

? 
C,(p) = K'S, (P,? c, cpj =.-I $, 

s 
ch (uj,Jh) f-‘(t’- Pa)-"' dl @a ') 

P 
,--I 

‘j (P) = * 
x 

(j - 1)! (2jp2- 2j + 2k + 1) 

k!(;-k-1)1(2kfl) 
(1 _ pz)k pW-k-l) 

c=ll 

The relation connecting the force p acting on the stamp with the displacement 6 of thestamp 

is given by the formulas 

where zk is the solution of the infinite system (2.10) with coefficients (4.11, where 

The quantities Fjk are given by the formulas (5.8), auk by (5.6) and (5.7), and yV,, denote 

the zeros of the function 2u+sinZu lying in the right half-plane (Ym # (1) - Their asymptotic 

behavior at large values of n% is known and given by /14/ 

Y,. - ;I (,,I - 'I,) * II:! In (4-rnz - T) (1,1 * *:) 

A Fortran program was written for numerical solution using the computer BESM-6. The dimension- 

less quantities 

p* Z’(I - ,.)(,,I%-‘. ,,* Cp) -= q (pT)(l ~~ vi ci (\lLV ’ (p < 1) (6.4) 

were studied for various values of the parameter h and R* n ! a. The values of P and 'I (r) 

were found from (6.2) and (6.1), respectively. The proposed algorithm yields the values of 
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P* and q*(p) for 5>,i with practically any degree of 

accuracy, and the solution of the infinite system of 

linear algebraic equations is obtained using the reduc- 

tion method. The quantity M of (5.6) was assumed finite 

in (6.1)- (6.3), and this enabled us to obtain P* and 

rl* (P) with an accuracy of up to the terms of the order 

of A-2M-1 . We note that the larger the parameter (R-Q) / 

h, the fewer equations of the reduced infinite system 

are required (see /13/ for a more detailed discussion of 

convergence of the Proposed algorithm). Below we give 

2.2 the values of the quantities Pa and q*(p) for various h, 

R* and p: 
Fig.1 

R’ 1.5 2.0 

P* 5.426 F.096 

p(o.20) 0.071 1.022 
q*(O.%) 2.500 2.!N5 

R* 1.5 2.0 
P* 2.048 4.075 
q*(o.zo) 0.460 0.612 
'1*(O.!J5) 1.351 2.001 

a-2 

2.2 2.4 
6.142 6.143 
1.0211 1.032 
3.053 3.053 

h=4 

2.5 3.0 
4.616 4.844 
0.702 0.750 
2.311 2.444 

2.0 2.8 3.0 Do 
6.12F G. 103 6.082 6.024 
1.034 1.095 1.036 1 .o:w 
3.051 3.0/13 3.033 3.002 

3.8 
4.940 4;82 

0.801 
2.480 

Analysing the numerical values of P* for fixed Icwe can conclude that, when the para- 

meter Reincreases from zero to some value depending on h, the resistance of the cylinder 

against the imbedding of the stamp also increases. When the value of R* is increased further, 

theresistancediminishes and tends to some constant value. This is illustrated in the Fig.1 

where P’is plotted against R* for h = 2. We note that the proposed algorithm yields solu- 

tions of the dynamic Problems 1 and 2 with any degree of accuracy also when h>h*(o), and 

in this case A*(O) increases with the increasing frequency o. 

The author thanks V. M. Aleksandrov for attention given and for assessing the results. 
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